Japanese *Mo*: Universal, Additive, and NPI

Mana Kobuchi-Philip

UiL-OTS, Utrecht University

M.Kobuchi@uu.nl

This paper discusses four distinct functions of the Japanese particle *mo*, namely, (i) the universal quantificational use of *mo* with an indeterminate; (ii) *mo* within a negative polarity item containing an indeterminate; (iii) *mo* within a negative polarity item functioning as a minimizer; and (iv) additive *mo*. Starting with Shimoyama (2001, 2006) and a significantly modified adaptation of Kobuchi-Philip’s (2008a) analysis of universal quantificational *mo*, this paper proposes a unified semantic analysis of all four uses of *mo*. It is argued that X-*mo* is syntactically an adjunct, and that its semantics involves (i) a condition of membership in the denotation of the DP construed with the *mo*-phrase (the Condition of Inclusion in Moltmann 1995), (ii) a condition of membership in the predicate denotation, and (iii) a condition requiring the existence of an additional element with the same properties as the referent of what *mo* syntactically combines with.

Keywords: Universal quantifier, additive, NPI, indeterminate, minimizer

1. Introduction

The Japanese particle *mo* occurs in a various semantic environments. (1) shows that it has at least four distinct uses:

(1) a. *dono hito* -*mo* *hashitta*. (universal quantificational *mo*)
 which person *mo* ran
 ‘Everybody ran.’

 b. *dare-* *mo* *hashira-na-katta*. (indeterminate NPI *mo*)
 who *mo* run NEG PAST
 ‘Nobody ran.’

c. hito-ri-mo hashira-na-katta. (minimizer NPI mo)
 I CL MO run NEG PAST
 ‘Not one person ran.’

d. John-mo hashitta. (additive mo)
 John MO ran
 ‘John also ran.

In (1a), mo associated with the indeterminate dono hito ‘which person’ has universal quantificational force (e.g. Hagstrom 1998, Kobuchi-Philip 2008a, b, Nishigauchi 1990, Ohno 1989, Shimoyama 2001, 2006, von Stechow 1996, Watanabe 1992). In (1b) it is part of a negative polarity item (NPI) with an indeterminate pronoun (e.g. Aoyagi 1994, Kato 1985, Watanabe 2004). In (1c) mo is part of a ‘minimizer’ NPI (e.g. Watanabe 2004). Finally, (1d) illustrates mo as an additive particle (e.g. Shudo 2002).

In the literature these various uses of mo are often discussed separately. This is likely to be due to the assumption that they are formally distinct from each other with respect to prosodic, syntactic and semantic or pragmatic properties. Mo is a very complicated lexical element. As is often mentioned in the literature (e.g. Watanabe 2004), the mo-phrase in (1b) and (1c) is regularly pronounced with a rising prosodic pattern, rather than a falling prosodic pattern, but this is not the case for (1a) and (1d). Syntactically, mo may compose with a phrase of virtually any category.1 Semantically, all uses

1 Aside from the nominal category (NP/DP), mo can be associated with quite a few other syntactic categories. Some examples are shown below:

(i) Taro-wa [dare-ga denwashite]-mo deru. (IP) (Shimoyama 2001)
 Taro TOPO who NOM phone MO attend
 ‘Taro picks up the phone no matter who calls.’

(ii) daihyoosha -ga [nihon-kara]-mo shussekishita. (PP)
 representative NOM Japan from MO attended
 ‘A representative attended also from Japan.’

(iii) tashikani [sono kanoosei -ga aru -to] -mo i -eru (CP)
 certainly that possibility nom exist COMP MO say POSS
 ‘Certainly we can also say that the possibility exists.’

(iv) moo [itaku]-mo naku -natta. (Adjective)
 already painful MO disappear became
 ‘It has no longer been hurting, either.’
of *mo* seem to give rise to quantification, yet the interpretation is apparently not uniform. Pragmatically, the presence of a presupposition with *mo* is not always clear. These diverse properties make the complete picture of *mo* quite intricate and thus, at first blush, it might seem impossible to attain a unified analysis of the four different uses.

On the other hand, we are confronted with the fact that these four sentence types, each with a different meaning, all contain the same element *mo*. Despite the diversity of semantic functions, we must assume that there are some uniform formal properties of *mo* which straightforwardly contribute to the different interpretations that are observed. We pursue this matter in this paper. In order to do so effectively, we will limit ourselves to the simplest types of syntactic construction, namely *mo* associated with a nominal element as in (1), and concentrate on the formal semantics of *mo*, i.e. its quantificational properties yielding truth conditions, and put aside its presuppositional effects. Although the presuppositional aspect of *mo* is quite important to understand the whole picture of *mo*, it is important to start with the formal semantic properties.

2. Universal quantificational *mo*

In this section, we look at two analyses of universal quantificational *mo*, that of Shimoyama (2001, 2006) and that of Kobuchi-Philip (2008a).

Shimoyama (2001, 2006) offers a semantic analysis of the Japanese indeterminate quantifier construction with *mo* which yields a universal quantificational interpretation, e.g. sentences such as (2):

(2) \[\text{odononokaasan}\text{-mo} \text{oodotta}.\]
which student gen mother mo danced
‘Every mother of a student danced.’
In accordance with earlier work (e.g. Ohno 1989, Nishigauchi 1990, Watanabe 1992, von Stechow 1996, Hagstrom 1998), mo is analyzed as a universal quantifier in Shimoyama’s analysis. However, unlike these authors, Shimoyama proposes that the restrictor of the universal quantifier mo is directly provided by its whole sister phrase. Thus, according to this ‘direct restrictor view’, the restrictor of mo in (2) would be the entire NP dono gakusei-no okaasan ‘which student’s mother’. Under an alternative ‘embedded restrictor view’, the restrictor of mo in (2) would be only the embedded NP dono gakusei ‘which student’. Under Shimoyama’s analysis, the composition of mo with its restrictor is straightforwardly determined by the surface syntax. This is a significant improvement over earlier analyses that had adopted an embedded restrictor view. The definition of mo and X-mo under Shimoyama’s analysis is given in (3):

\[(3)\]
\[a. \text{mo} = \lambda P \lambda Q \forall x [P(x) \rightarrow Q(x)], \text{where} \ x \in D_t, \text{and} \ P, Q \in D_{<t,t>}.\]
\[b. [[X-\text{mo}]] = \lambda Q \forall x [P(x) \rightarrow Q(x)], \text{of type} <<t, t>, t>.\]

Here, if mo combines with a nominal element, i.e. if X of X-mo is a nominal element, mo would be analyzed as an element of type <<e, t>, <<e, t>, t>>, X-mo being a generalized quantifier of type <<e, t>, t>>. Thus, under this analysis, mo is treated as a universal quantifier just like English every in standard generalized quantifier theory (Barwise and Cooper 1981).

2.2 Kobuchi-Philip (2008a)

Although Shimoyama’s analysis is a substantial improvement over the traditional embedded restrictor view, Kobuchi-Philip (2008a) notes that there are syntactic, i.e. compositionality, problems with Shimoyama’s analysis. Consider the data in (4) and (5):

\[(4)\]
\[a. [[\text{dono hito}]_{NP} \text{-mo}] \text{o-dotta}.\]
\[\text{which person mo danced}\]
\[\text{‘Every person danced.’}\]
\[b. [[\text{gakusei-no okaasan}] \text{-ga} [[\text{dono hito}]_{NP} \text{-mo}] \text{o-dotta}.\]

In (3) \(\tau\) is a variable ranging over any semantic type, as defined in (3a). This is to cover the various syntactic category of X of X-mo exemplified in footnote 1.
student GEN mother NOM which person MO danced
‘All the mothers of the students danced.’

 John NOM which person MO praised
 ‘John praised every person.’

 John NOM dep’t GEN student ACC which person MO praised
 ‘John praised every student in the department.’

In (4a) the mo-phrase might be considered the subject of the sentence; however, in (4b) there is an overt subject in addition to this mo-phrase. Similarly, in (5a), the mo-phrase might look like the object; yet in (5b) we see that an overt object can co-occur with this mo-phrase. Sentences like (4b) and (5b) are perfectly grammatical and quite unmarked. However, under Shimoyama’s analysis, they are predicted to be ill-formed, since the extra subject or object would not be included in the interpretation computation of the sentence.

It is clear that the ga-marked nominal element in (4b) and the o-marked nominal element in (5b) must be taken to be the subject and the object, respectively. If so, the mo-phrase in (4b) cannot be a subject, given that in Japanese, as in other languages, a sentence can have only one logical subject (e.g. Heycock 1993). The same can be said for the direct object of (5b). Therefore, following e.g. Aoyagi (1994), Kobuchi-Philip (2008a) adopts the hypothesis that sentences such as (4a) and (5a) have a null subject and a null object, respectively, and claims that mo-phrase is not an argument but rather an adjunct. This is supported by the fact that a single sentence can contain more than one such mo-phrase, as exemplified in (6):

(6) gakusei-ga dono danshi-mo dono joshi-mo hashitta.
 student NOM which boy MO which girl MO ran
 ‘The students ran, including every boy and including every girl.’

Treating the mo-phrase as an adjunct, Kobuchi-Philip (2008a) proposes
the alternative analysis summarized in (7):³

(7)

a. *Mo*-phrase is a modifier of type \<<e,t>,<e,t>>*, thus, there is a phonologically null subject for sentences which lack an overt one.

b. The semantic value of a null subject is drawn from the NP in the *mo*-phrase.

c. *Mo*: \(\lambda P\lambda R\lambda x[\prod (P\cap AT(\oplus R))\lor AT(x)\geq 2]\)

Under this analysis, X-*mo* in a sentence such as (1a) or (2) is a VP modifier. Assuming that a parallel statement of (7a) holds for sentences like (5a), when a *mo*-sentence lacks an overt subject or object, it is simply an instance of a null subject or null object sentence, a pervasive phenomenon in Japanese. It is argued that the semantic value of the null element is directly taken from the NP inside the *mo*-phrase, as stated in (7b). In (2), for example, *gakusei-no okaasan* ‘student’s mother’ provides the meaning of the subject.

The plurality specification (the second conjunct of the denotational formula of *mo* in 7c) is included to account for the ill-formedness of a sentence such as (8), in which the subject refers to just a single individual.⁴

(8)

\#John -ga, *dono* hito -mo hashitta.

John nom which person mo ran

An advantage of the analysis by Kobuchi-Philip’s (2008a) is that it covers both sentences such as (4b) and (5b) (with an overt argument) and sentences like (4a) and (5a) (without an overt argument). Thus, it has better empirical coverage than Shimoyama’s analysis.

3. A unified analysis of *mo*

In this section, we propose a unified semantic analysis which is appli-

³ Here and throughout, Hamblin’s (1973) semantics of questions, Link (1983) and Landman’s (2000) plurality theory, Kobuchi-Philip’s (2006) null determiner hypothesis are adopted. For a more detailed explication of this hypotheses, see 3.5.

⁴ I thank Daisuke Bekki for pointing this out to me, correctly.
cable to all four of the different uses of *mo* illustrated in (1) above. We first observe in 3.1 that Kobuchi-Philip’s (2008a) analysis of universal quantificational *mo* would not easily extend to additive *mo*. In 3.2 we modify the analysis of null argument sentences with *mo*. Then we re-examine the formal properties of *mo* in detail in 3.3, 3.4 and 3.5.

3.1. Problems with additive *mo*

Although Kobuchi-Philip’s (2008a) analysis of universal quantificational *mo* can be viewed as an improvement over Shimoyama’s (2001, 2006) analysis, it turns out that this analysis cannot easily be extended to the other uses of *mo*. In particular, let us consider the case of additive *mo* in (1d). First, (7b) is problematic since it produces a sentence such as (9) as the underlying structure for (1d):

(7) b. The semantic value of a null subject is drawn from the NP in the *mo*-phrase.

(8) d. John-*mo* hashitta.
 John *mo* ran
 ‘John also ran.’

(9) #John-ga, John-*mo* hashitta.
 John NOM John *mo* ran

The sentence in (9) is clearly highly infelicitous, if not simply ungrammatical. Given the grammaticality of a sentence such as (6) above and (10) below, we might try using *gakusei* ‘student’ as the underlying subject of (1d) instead of *John*, as shown in (11a). But then the interpretation calculation yields a fatally incorrect result, as shown in (11b):^5^,^6^

^5^ Partee’s (1987) type-shift theory is adopted here.

^6^ The sentence in (11a) contains an overt subject and a *mo*-phrase in which *mo* combines with a proper noun. Such a sentence may not sound natural and some readers may hesitate to judge (11a) as totally well-formed. However, the grammaticality of (6), which has the same construction but another *mo*-phrase, suggests that the awkwardness in (11a) is not due to a semantic problem but rather
The logical representation (11b) asserts (i) that the supremum of the set of the relevant students is part of the sum of the individuals in the intersection of the singleton set of John and the set of runners, and (ii) that the cardinality of this set of students is 2 or more. Here a substantial contradiction arises: According to (i), for the sentence to be true, the cardinality of the set of the contextually relevant students must be 2 or more; yet according to (i) this has to be part of just John, since the intersection of the singleton set of John and the set of runners turns out to be the set containing just John.

There is another problem for the plurality specification $|\text{at}(x)| \geq 2$, i.e. the assertion that the cardinality of x (the students in 11b) be 2 or more. Consider the following sentence:7

(12) *gakusei-ga [Taro-to Hanako]-mo hashitta.*

student-NOM Taro-AND Hanako -MO ran

‘The students ran, including Taro and Hanako.’

In this sentence, X of X-mo, i.e. the bracketed part of the sentence, is already plural. Native speaker intuition tells us that for this sentence to be true there must be somebody other than Taro and Hanako who is also a student; i.e. all together there must be at least three students in the domain of discourse. No matter how many individuals are referred to by X of X-mo, the condition which makes the sentence true is that there be at least one relevant individual other than those included in X. Thus, reference to the

7 I thank Chris Tancredi for calling my attention to sentences such as (12).
number 2 does not do the job.

For this reason, as is, the analysis in (7) cannot be extended to additive mo. (7b) and (7c) must be reconsidered if we are to pursue a unified analysis of mo that also covers additive mo.

3.2. Identity of null arguments

Given the problem noted in 3.1, let us step back and re-examine the formal properties of mo. Let us start our re-examination with (7b):

(7) b. The semantic value of a null subject is drawn from the NP in the mo-phrase.

As we saw in the last section, (7b) does not yield the desired meaning for the null subject, when we consider a sentence with additive mo. When a sentence has a null subject, as in the case of (6) and (10) above, the referent of the null subject must already be in the discourse context, such that it can be recovered effortlessly. Otherwise, use of the null argument would be just as infelicitous as the use of a pronoun with no discourse antecedent. This context dependency introduces a certain indeterminacy as to the exact reference of the argument. When the sentence lacks an overt subject, as in (1d), the referent of the null subject might be ‘the students’, ‘the members of the club’, ‘the people the speaker thought would run’, etc.; the exact reference completely depends on the context.

This context dependency of the identity of the null element can be assumed to be a general phenomenon, since it is also observed in the sentences in (1a-c). The set of individuals which dono hito-mo ‘everyone’, dare-mo ‘everyone’, and hito-ri-mo ‘one person’ refer to is some set of people who are salient in the context. For example, dono hito-mo ‘everyone’ denotes a set of people, but (1a) does not usually allude to everyone in the world, but only to the particular subset of people who are relevant in the context in which this sentence is uttered. The same applies to dare-mo and hito-ri-mo. The same can be said for sentences with mo-phrase and a null object. Thus, we can replace (7b) with the following:

(13) The semantic value of a null argument is drawn from the context
by means of accommodation mechanisms.

This accords with the general licensing condition of the null subject and object in Japanese, at least from the pre-theoretical, intuitive point of view.

In the next subsection we examine the denotation of *mo* itself.

3.3. Predicate membership and argument membership

In accordance with our discussion in the last subsection, let us here suppose that the contextually provided referent of the null subject of the sentences in (1) is *gakusei* ‘student’, such that these sentences are equivalent to the sentences in (14):

\[(14)\]

\[\begin{align*}
\text{a. } & \text{gakusei}\text{-ga } \text{dono } \text{hito } -\text{mo } \text{hashitta.} \\
& \text{student nom which person MO ran} \\
& \text{‘Every student ran.’}
\end{align*}\]

\[\begin{align*}
\text{b. } & \text{gakusei}\text{-ga } \text{dare-} \text{mo } \text{hashira-na-katta.} \\
& \text{student nom who MO run NEG PAST} \\
& \text{‘No student ran.’}
\end{align*}\]

\[\begin{align*}
\text{c. } & \text{gakusei}\text{-ga } \text{hito-ri-} \text{mo } \text{hashira-na-katta.} \\
& \text{student nom 1 CL MO run NEG PAST} \\
& \text{‘Not one student ran.’}
\end{align*}\]

\[\begin{align*}
\text{d. } & \text{gakusei}\text{-ga } \text{John-} \text{mo } \text{hashitta.} \quad (=11a) \\
& \text{student nom John MO ran} \\
& \text{‘The students ran, including John.}
\end{align*}\]

Now, let us look at Kobuchi-Philip’s (2008a) (7c) again:

\[(7)\]

\[c. \text{Mo: } \lambda P\lambda R\lambda x[\prod (P \cap \text{at}(\oplus R)) \land |\text{at}(x)| \geq 2]\]

Let us first focus on the first conjunct of the formula, i.e. \(\prod (P \cap \text{at}(\oplus R))\).\(^8\) This states two things at the same time. When (14a) is cal-

\(^8\) The motivation for the first conjunct of the denotation (7c) is not explained completely clearly in Kobuchi-Philip (2008a). Aside from making the motivation more explicit, we here also improve the denotational formula of Kobuchi-Philip (2008b).
culated with this denotation of *mo*, it will assert that the students relevant in the context are part of the set of people and also part of the set of runners. However, when (14d) with additive *mo* is calculated, it will assert that the students relevant in the context are part of John. Obviously this is wrong. So, let us make some modifications.

The first apparent semantic property of *mo* is that X in X-*mo* is an element of the predicate denotation. In (14d) with additive *mo*, John is obviously one of the runners. Note that this membership is applicable to other cases of *mo* as well. Every person referred to by *dono hito-mo* in (14a) has the property of having run. Everyone referred to by *dare-mo* in (14b) and *hitori-mo* in (14c) has the property of not having run. In general, then, the X of X-*mo* has to be an element of the predicate denotation. Let us call this the ‘predicate membership’ constraint.

A second observation concerns sentences like (14d). Closer examination reveals that (14d) is true if and only if John is one of the students denoted by the subject. Observe the ill-formedness of the following sentence:

\[(15) \# \text{gakusei-ga Suzuki-sensei-mo hashit-ta.}\]

student NOM Suzuki teacher MO run PAST

The reason for the ill-formedness of this sentence is that Prof. Suzuki is not a student. Notably, this condition is parallel to the ‘condition of inclusion’ of Moltmann’s (1995) analysis of exception constructions such as with English *except for* and *but*. Here I will call the parallel phenomenon with Japanese *mo* the ‘argument membership’ constraint.

9 For the interpretation discussed here, the negated predicate in (14b,c) should be treated as a property containing the negation, i.e. internal negation (Horn 1989). That is, *hashiranakatta* ‘didn’t run’ denotes a set of individuals all of which have the property of not running. This accords with Shimoyama (2001, 2006) and Kataoka (2006), in the sense that the *mo*-phrase in a sentence such as (14b) takes scope wider than the negation.

10 This can be shown in the examples such as the following:

(i) #Every boy except/but Mary ran.
(ii) #No boy except/but Mary ran.

11 Note that this is distinct from the syntactic condition of the same name in Chomsky (1995).
Now, argument membership has already been referred to in our discussion in 3.1 and 3.2. Especially in 3.2, we mentioned that *dono hito-mo* ‘every person’, *dare-mo* ‘everybody’, and *hito-ri-mo* ‘(any) one person’ refer not to everybody in the world but only everybody within the relevant set of individuals referred to by the null element. Thus, in (14a), for example, *dono hito-mo* ‘everybody’ refers only to everyone among the students referred to by the subject *gakusei* ‘student’. Therefore, let us conclude that the argument membership constraint is generally applicable to X-mo in all the four uses of *mo*.

The two constraints, namely the predicate membership constraint and the argument membership constraint, can be expressed explicitly in two conjuncts, as in (16a). This replaces the first conjunct of (7c). Thus, when *John*, *hashitta* ‘ran’ and *gakusei* ‘student’ are substituted in for P, R and x, respectively, (16b) is the interpretation of (14d), after lambda calculation:

\[
\text{b. } (\text{at}(\oplus \text{John}) \subseteq \text{at}(\oplus \text{Student})) \land (\text{at}(\oplus \text{John}) \subseteq \text{ran}) \land \ldots \\
\text{‘John is a student.’} \quad \text{‘John ran.’}
\]

3.4. Additivity

Let us now examine the plurality specification expressed in the second conjunct of (7c), shown in isolation in (17):

\[
\text{Mo: } \lambda P \lambda R \lambda x [\ldots \land |\text{at}(x)| \geq 2]
\]

Although we have just made a reasonable improvement of the first conjunct of (7c), as we saw in 3.1, the plurality specification in the second conjunct created a substantial problem for the analysis of additive *mo*. Consider again (14d):

\[
\text{d. gakusei-ga John-mo hashitta.} \\
\text{student nom John mo ran}
\]
‘The students ran, including John.

In the interpretation computation, the element \(x \) in (7c) will be replaced by the denotation of \(\text{gakusei} \) ‘student’, and thus, \(|\text{at}(x)| \geq 2\) will determine that the cardinality of the students is two or more. However, this was the problem in light of a sentence such as (12), repeated here as (18):

\[
gakusei-ga [\text{Taro-to Hanako]-mo hashitta}.\]

‘The students ran, including Taro and Hanako.’

In order to obtain the correct meaning of the sentence, it is not adequate to merely specify that the cardinality of the students be 2 or more. What is needed to guarantee the correct meaning of \(\text{mo} \) in this sentence is that there be at least one individual \textit{aside from Taro and Hanako} who also ran. Note that this individual must also be a student, since this sentence is not true if, say, a professor also ran. Satisfying the argument membership and predicate membership constraints discussed in 3.3 above, Taro and Hanako have to be included in the set of the students in the context as well as in the set of runners. The additional individual needed here is an individual just like Taro and Hanako, namely, a student runner. Our analysis leads us, then, to propose the formula in (19a) as the replacement for the second conjunct of (7c=17), yielding (19b) when (18) is calculated:12

\[
\text{Mo: } \lambda P \lambda R \lambda x [\ldots \land |\text{at}(x)| \geq 2]
\]

(19)
\begin{align*}
\text{a. } \text{Mo: } & \lambda P \lambda R \lambda x [\ldots \land (((\text{at}(x))\land (\exists \text{P}))\cap R) \neq \emptyset)] \\
\text{b. } & (((\exists (\exists \text{student})\land (\exists \text{taro@hanako)}))\cap \text{ran}) \neq \emptyset))
\end{align*}

The logical representation (19b) asserts that there exists some student runner aside from Taro and Hanako, an additional individual who has the same property as Taro and Hanako. I will use the term ‘additivity’ to refer to this

12 Consideration of predicate membership leads Kobuchi-Philip (2008b) to offer another formulation of the plurality specification, which is shown in (i):

(\text{i}) \(\text{Mo: } \lambda P \lambda R \lambda x [(\text{at}(x))\land (\exists \text{P}))\subseteq R \land |\text{at}(x)| \land R \geq 2] \)
constraint in the rest of the paper.

3.5. Additivity and universality

At this point, let us summarize the modifications we have made to Kobuchi-Philip’s (2008a) analysis of universal quantificational mo. The way in which this new analysis captures the meaning of additive mo in sentences like (14d) is shown in detail in (20):

 student nom *John* mo ran
 ‘The students ran, including John.’

(20) a. syntax
 student NOM *John* MO ran
 ‘The students ran, including John.’

b. lexical entries
 mo ‘mo’: λP<e,t>λR<e,t>λx e[(AT(⊕P)⊂AT(x))∧(AT(⊕P)⊂R)∧(((AT(x)-AT(⊕P))∩R)≠∅)]
 John: λx e[john(x)] (the singleton set of John: Partee 1987)
 hashitta ‘ran’: λx e[ran(x)]
 gakusei ‘student’: λx e[stu(x)]
 ∅ the: λX<e,t>λY<e,t>[Y(⊕X)]

c. outcome
 (AT(⊕JOHN)⊂AT(⊕STU)) ∧ (AT(⊕JOHN)⊂RAN)
 [John is a student.]
 [John ran.]
 ∧(((AT(⊕STU)-AT(⊕JOHN))∩RAN)≠∅)
 [There is some non-John student runner.]

Though the analysis in (20) provides the correct interpretation for a sentence with additive mo, when applied to universal quantificational mo and the two types of NPI mo, there arises an issue with respect to universality. Here I will discuss this issue and outline the solution to the problem.

Using the new definition of mo shown in (20b), the calculation of (14a) with a universal quantificational mo would be as shown in (21):
Japanese Mo: Universal, Additive, and NPI

(14) a. gakusei-ga dono hito -mo hashitta.
 student NOM which person MO ran
 ‘Every student ran.’

(21) a. syntax
 [∅ the [gakusei]] -ga [[dono hito -mo] hashitta].
 student NOM which person MO ran
 ‘The students all ran.’

b. lexical entries
 mo ‘MO’: λP<e,t>λR<e,t>λx_e[(AT(⊕P)⊆AT(x))\(∩\)(AT(⊕P)⊆R)\(∩\)(((AT(x)-AT(⊕P))\(∩\)R)≠∅)]
 dono hito ‘which person’: λx_e[PERSON_AT(x)]
 hashitta ‘ran’: λx_e[ran(x)]
 gakusei ‘student’: λx_e[stu(x)]
 ∅the: λX<e,t>λY<e,t>Y(⊕X)

c. outcome
 (AT(⊕PERSON_AT)⊆AT(⊕stu)) \(∩\)(AT(⊕PERSON_AT)⊆RAN)
 \(∩\)(((AT(⊕stu)-at(⊕PERSON_AT))\(∩\)RAN)≠∅)

The first conjunct of (19) asserts that the relevant set of people (the extension of dono hito ‘every person’) are students. This is correct. The second conjunct asserts that these people ran. This is also correct. However, there seems to be a problem in the third conjunct. It asserts that there exists some non-person student runner(s). Note that all the students are people; thus, in principle there is no such thing as ‘non-person student’. The same problem arises for (14b) and (14c) with the two types of NPI mo sentences, since both dare-mo ‘everyone’ and hito-ri-mo ‘(not) one person’ require reference to a totality, giving rise to exactly the same apparent paradoxical computation.

There is a solution to this problem. The interpretation of the sentence (14a) is exactly the same as the interpretation of (22), and in turn, as the interpretation of (23), provided that John, Mary and Tom are the set of all the stu-

13 Following Hamblin (1973), the indeterminate dono hito ‘which person’ is assumed to denote a set of contextually relevant people. However, adopting Kobuchi-Philip (2006), it is assumed to denote a set of atoms only, excluding sums.
students given in the context:

\[(22) \text{gakusei-ga John-mo Mary-mo Tom-mo hashitta.}\]
\[\begin{align*}
\text{student } & \text{nom John mo Mary mo Tom mo ran} \\
\text{‘The students ran, including John, including Mary and including Tom.’}
\end{align*}\]

\[(23) \text{gakusei-ga John-mo hashiri,}\]
\[\begin{align*}
\text{student } & \text{nom John mo run} \\
\text{Mary-mo hashiri,} \\
\text{Mary mo run} \\
\text{Tom-mo hashitta.} \\
\text{Tom mo ran} \\
\text{‘The students ran, including John, including Mary and including Tom.’}
\end{align*}\]

That is, given the context in which John, Mary and Tom are all the students, the interpretation of (14a) can be assumed to be calculated as the collection of three sentences, as in (24):

\[(24) \begin{align*}
\text{i. gakusei-ga, John-mo hashitta.} \\
\text{student } & \text{nom John mo ran} \\
\text{‘The students ran, including John.’} \\
\text{ii. (gakusei-ga,) Mary-mo hashitta.} \\
\text{student } & \text{nom Mary mo ran} \\
\text{‘The students ran, including Mary.’} \\
\text{iii. (gakusei-ga,) Tom-mo hashitta.} \\
\text{student } & \text{nom Tom mo ran} \\
\text{‘The students ran, including Tom.’}
\end{align*}\]

Each of these sentences is interpreted as in (14d), i.e. (20). Thus, (24i) yields the interpretation such that John is a student; John ran; and there is some non-John student runner. This non-John student runner turns out to be Mary or Tom. (24ii) yields a similar interpretation: Mary is a student; Mary ran; and there is some non-Mary student runner, namely John or Tom. Like-
wise, (24iii) yields a similar interpretation and here the non-Tom student runner is John or Mary. Thus, the interpretation of the sentence (14a) can be calculated without any resulting contradiction.

This approach concords with the original idea behind Hamblin’s (1973) analysis of questions in the sense that a question sentence such as Who left?, in the context in which the possible alternative individuals are John, Mary, and Tom, denotes the set of possible answers such as {John left, Mary left, Tom left}. Thus, in the interpretation of (14a), mo applies to the denotation of *dono hito* ‘which person’ distributively (and exhaustively), rather than to the set of people (relevant in the context) as a sum.

In relation to this, note the difference in interpretation of sentences with multiple mo-phrases and sentences with a single mo-phrase when plural individuals are involved. Consider (25) and (26):

(25)
\[\text{gakusei-ga John-mo Mary-mo hashitta.} \]
\[(=10) \]
\[\text{student} \quad \text{nom} \quad \text{John} \quad \text{MO} \quad \text{Mary} \quad \text{MO} \quad \text{ran} \]
\[\text{‘The students ran, including John and including Mary.’} \]

(26)
\[\text{gakusei-ga [Taro-to Hanako]-mo hashitta.} \]
\[(=12) \]
\[\text{student} \quad \text{nom} \quad \text{Taro} \quad \text{AND} \quad \text{Hanako} \quad \text{MO} \quad \text{ran} \]
\[\text{‘The students ran, including Taro and Hanako.’} \]

The sentence in (25) is true in the situation in which there is no student other than John and Mary. In contrast, the sentence in (26) is not true if there is no student other than Taro and Hanako. This shows clearly that John-mo and Mary-mo in (25) are computed separately, satisfying additivity in each mo-phrase computation, while Taro-to Hanako-mo in (26) is computed once as a sum, requiring the existence of some individual other than Taro and Hanako.

The observations discussed in relation to universal quantificational mo and additive mo also hold for the two types of mo that occur in NPI environments, i.e. sentences such as (14b) and (14c):

(14)
\[\text{b. gakusei-ga dare-mo hashira-na-katta.} \]
\[\text{student nom who MO run NEG PAST} \]
‘No student ran.’

c. *gakusei-ga hito-ri-*mo hashira-na-katta.*

student NOM I CL MO run NEG PAST

‘Not one student ran.’

In (14b), *dare* ‘who’ can be assumed to have the same denotation as *dono hito* ‘which person’ in (14a). Thus, the interpretation would proceed in the same way as with (14a) except that the predicate *hashiranakatta* ‘didn’t run’ is negative, which we took to denote a set of individuals who did not run. In (14c), *hitori* ‘one person’ also denotes a set of individual persons. This turns out to be equivalent to that denoted by *dono hito* ‘which person’ in (14a) and *dare* ‘who’ in (14b). Having the subject *gakusei* ‘student’, (14c) yields an interpretation asserting that each student did not run. In sum, the additivity condition as formulated in the last subsection is well motivated both empirically and theoretically.

4. Summary and further considerations

This paper aimed at finding the formal semantic properties of *mo* which are at work in four different uses of it as shown in (1), repeated here:

(1) a. *dono hito -mo hashitta.* (universal quantificational *mo*)

which person MO run
‘Everybody ran.’

b. *dare-mo hashira-na-katta.* (mo in NPI with indeterminate)

who MO run NEG PAST
‘Nobody ran.’

c. *hito-ri-mo hashira-na-katta.* (mo in minimizer NPI)

I CL MO run NEG PAST
‘Not one person ran.’

d. *John-mo hashitta.* (additive *mo*)

John MO run
‘John also ran.’

We discussed Shimoyama’s (2001, 2006) analysis of universal quantifica-
tional *mo* as the starting point, then moved on to Kobuchi-Philip’s (2008a) modification to Shimoyama’s analysis. In order to derive an analysis which covers other uses of *mo*, including additive *mo*, we re-examined the truth conditions of *mo* and clarified the relationship between elements of the sentence with *mo*. Despite the apparent diversity of meaning of the four different *mo*-sentence types, a unified analysis is possible. This is summarized in (27):

(27)

a. *Mo*-phrase is a modifier of type $<<e,t>,<e,t>>$, thus, there is a phonologically null argument for a sentence which lacks overt one.

b. The semantic value of a null argument is drawn from the context by means of accommodation mechanisms.

c. *Mo*: $\lambda P_{<e,t>}\lambda R_{<e,t>}\lambda x_{<e,t>}(\text{at}(\oplus P)\subset \text{at}(x)) \land (\text{at}(\oplus P)\subset R) \land (\text{at}(x)\setminus \text{at}(\oplus P)) \cap R \neq \emptyset$]

Under this analysis, *mo* has the following formal properties:

(28)

a. Argument membership constraint (first conjunct of 27c)

b. Predicate membership constraint (second conjunct of 27c)

c. Additivity constraint (third conjunct of 27c)

Finally, the solution to the apparent conflict between additivity and universality was found in a distributive computation of each individual in association with *mo*.

Although the unified analysis outlined in this paper overcomes a number of large obstacles, there do remain some tasks for future research. First, although we suggested an approach to the conflict between additivity and universality, the exact semantics of indeterminates has to be more precisely defined in order for this approach to attain the desired formal rigor. Second, the analysis suggested here has limited application. That is, we restricted our discussion to the most basic construction with *mo*, where it combines with a nominal element. As mentioned in the introduction, *mo* in fact can combine with a great variety of types of phrases. In order to cover such diversity, Shimoyama (2001, 2006) proposes the analysis in (3), which allows type-
flexibility. We have not yet addressed this issue. Thus, one of the future
tasks is to see how the analysis suggested here can be generalized, so that
it covers mo-phrases with non-nominal elements. Third, there is another
intriguing matter touched on in our discussion, namely the relationship
between the argument membership constraint and Moltmann’s (1995) anal-
ysis of English exception constructions with except for and but. In Japa-
nese, there is a similar lexical item shika. This lexical item appears to have a
very similar, if not the same, meaning as English except for, and to obey the
argument membership constraint. In addition it is syntactically similar since
a phrase with shika is an adjunct (Kobuchi-Philip 2009). Thus, an important
topic for future research is the relationship between mo and shika. Fourth,
although the proposed analysis included the additivity constraint as part of
the formal semantic component, some linguists argue that it is part of the
pragmatic component (e.g. Kato 1985, Shudo 2002). The controversy paral-
lels with respect to English too/also (e.g. Soams 1989 for the semantic view;
Horn 1969, 1972, Karttunen and Peters 1979, etc. for the pragmatic view).
Thus, this issue has to be examined in conjunction with an investigation of
the semantics and pragmatics of English lexical items corresponding to Jap-
nese mo. Fifth, since Japanese and Korean are well-known to be closely
related, it is of our great interest to investigate the behavior of Korean to,
which corresponds to Japanese mo.

Acknowledgement

This is a revised version of my presentation at the Quantification in East
Asian Languages workshop held as part of the International Conference of
Cognitive Science 2008 in Seoul. For helpful comments and discussion, I
would like to thank the participants of this workshop, including Bart Geurts
and Chris Tancredi, as well as the organizing committee members; Kei
Yoshimoto, Norihiro Ogata, and Eric McReady. My thoughts go to Nori-
hiro Ogata, whose passing away right after this workshop saddened us all.

References

Aoyagi, H. 1994. “On Association with Focus and Scope of Focus Particles in
Japanese.” In M. Koizumi & H. Ura (eds.) Formal Approaches to Japanese
Japanese Mo: Universal, Additive, and NPI

Linguistics 1. 23-44. Cambridge, MA: MITWPL.
Barwise, J. and R. Cooper 1981. “Generalized Quantifiers and Natural Language.”
Linguistics and Philosophy 4. 159-219.
Horn, L. 1972. On the semantic properties of logical operators in English. Ph.D. Diss. UCLA.

